2^(15) = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.

What is the sum of the digits of the number 2^(1000)?

My solution in Ruby:

```
sum, number = 0, 2**1000
str = number.to_s
y = str.scan(/./)
y.each do |c|
sum += c.to_i
end
puts sum
```

2^(15) = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.

What is the sum of the digits of the number 2^(1000)?

My solution in Ruby:

```
sum, number = 0, 2**1000
str = number.to_s
y = str.scan(/./)
y.each do |c|
sum += c.to_i
end
puts sum
```

Here is another solution in Java

**

*Author : Vlad

*Website: http://www.mycoding.net

*Answer: 1366

*/

import java.math.BigInteger;

public class Euler16 {

public static void main(String[] args) {

int power = 1;

BigInteger expo = new BigInteger(“2”);

BigInteger num = new BigInteger(“2”);

while(power < 1000){

expo = expo.multiply(num);

power++;

}

System.out.println(expo); //Printing the value of 2^1000

int sum = 0;

char[] expoarr = expo.toString().toCharArray();

int max_count = expoarr.length;

int count = 0;

while(count<max_count){ //While loop to calculate the sum of digits

sum = sum + (expoarr[count]-48);

count++;

}

System.out.println(sum);

}

}