2^(15) = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^(1000)?
My solution in Ruby:
sum, number = 0, 2**1000
str = number.to_s
y = str.scan(/./)
y.each do |c|
sum += c.to_i
end
puts sum
Here is another solution in Java
**
*Author : Vlad
*Website: http://www.mycoding.net
*Answer: 1366
*/
import java.math.BigInteger;
public class Euler16 {
public static void main(String[] args) {
int power = 1;
BigInteger expo = new BigInteger(“2”);
BigInteger num = new BigInteger(“2”);
while(power < 1000){
expo = expo.multiply(num);
power++;
}
System.out.println(expo); //Printing the value of 2^1000
int sum = 0;
char[] expoarr = expo.toString().toCharArray();
int max_count = expoarr.length;
int count = 0;
while(count<max_count){ //While loop to calculate the sum of digits
sum = sum + (expoarr[count]-48);
count++;
}
System.out.println(sum);
}
}